Automaton Semigroups and Groups: on the Undecidability of Problems Related to Freeness and Finiteness

نویسندگان

  • Daniele D'Angeli
  • Emanuele Rodaro
  • Jan Philipp Wächter
چکیده

In this paper, we study algorithmic problems for automaton semigroups and automaton groups related to freeness and finiteness. In the course of this study, we also exhibit some connections between the algebraic structure of automaton (semi)groups and their dynamics on the boundary. First, we show that it is undecidable to check whether the group generated by a given invertible automaton has a positive relation, i. e. a relation p = 1 such that p only contains positive generators. Besides its obvious relation to the freeness of the group, the absence of positive relations has previously been studied and is connected to the triviality of some stabilizers of the boundary. We show that the emptiness of the set of positive relations is equivalent to the dynamical property that all (directed positive) orbital graphs centered at non-singular points are acyclic. Our approach also works to show undecidability of the freeness problem for automaton semigroups; in fact, it shows undecidability of a strengthened version where the input automaton is complete and invertible. Gillibert showed that the finiteness problem for automaton semigroups is undecidable. In the second part of the paper, we show that this undecidability result also holds if the input is restricted to be bi-reversible and invertible (but, in general, not complete). As an immediate consequence, we obtain that the finiteness problem for automaton subsemigroups of semigroups generated by invertible, yet partial automata, so called automaton-inverse semigroups, is also undecidable. The first author was supported by the Austrian Science Fund projects FWF P24028-N18 and FWF P29355-N35. The second author thanks the project INDAM-GNSAGA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS

In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...

متن کامل

The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is decidable

We prove that a semigroup generated by a reversible two-state Mealy automaton is either finite or free of rank 2. This fact leads to the decidability of finiteness for groups generated by two-state or two-letter invertible-reversible Mealy automata and to the decidability of freeness for semigroups generated by two-letter invertible-reversible Mealy automata.

متن کامل

Scalar Ambiguity and Freeness in Matrix Semigroups over Bounded Languages

There has been much research into freeness properties of finitely generated matrix semigroups under various constraints, mainly related to the dimensions of the generator matrices and the semiring over which the matrices are defined. A recent paper has also investigated freeness properties of matrices within a bounded language of matrices, which are of the form M1M2 · · ·Mk ⊆ Fn×n for some semi...

متن کامل

The finiteness problem for automaton semigroups is undecidable

The finiteness problem for automaton groups and semigroups has been widely studied, several partial positive results are known. However we prove that, in the most general case, the problem is undecidable. We study the case of automaton semigroups. Given a NW-deterministic Wang tile set, we construct a Mealy automaton, such that the plane admits a valid Wang tiling if and only if the Mealy autom...

متن کامل

Computational problems in matrix semigroups

This thesis deals with computational problems that are defined on matrix semigroups, which play a pivotal role in Mathematics and Computer Science in such areas as control theory, dynamical systems, hybrid systems, computational geometry and both classical and quantum computing to name but a few. Properties that researchers wish to study in such fields often turn out to be questions regarding t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.07408  شماره 

صفحات  -

تاریخ انتشار 2017